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Abstract

An initiation criterion is developed for a discrete constitutive equation model of material
failure. The decohesion constitutive model is combined with elasticity and implemented in
the numerical material-point method. The complete numerical proceedure is used to study
spall failure in brittle materials. A one-dimensional analytical solution for a bar subjected to
a sinusoidal pulse is derived and used to verify the numerical method. The sinusoidal pulse
leads to a finite region of the bar undergoing failure, rather than a single plane, as occurs
with a square or triangular wave pulse. This observation may be related to experimental
findings of multiple spall planes for impacted bars. The numerical method is not restricted
to one-dimensional problems, thus we further study the additional features that arise for
an impacted bar assuming that the bar deforms under plane stress conditions. Reflections
of stress waves from the lateral surfaces of the bar result in the appearance of curved and
secondary spall surfaces.
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1 Introduction

Modeling material failure is still a theoretically and numerically challenging problem. Nu-
merical simulation of dynamic, brittle fracture has been carried out using continuum damage
models (Seaman et al., 1985; Curran, et al., 1987; Walter, 1992; Johnson, et al., 1992; Rajen-
dran, 1994), and more recently using cohesive theories (Miehe and Schröder, 1994; Camacho
and Ortiz, 1996; Ortiz and Pandolfi, 1999; Pandolfi et al., 2000; Schreyer, et al., 2002;
Armero, 2002). The cohesive theories provide a discrete approach where material failure is
treated as a strong discontinuity in displacement with traction related to the discontinuity.
There is a rich history in which discrete constitutive equations are postulated directly as
reflected by Barenblatt (1959), Hillerborg et al. (1976), Needleman (1987), and Planas et al.

(1995). Feenstra et al. (1991a,b), and Corigliano (1993) provide a nice summary of previous
models and describe numerical methods based on interface elements. The use of‘constraint
elements is a related approach (Reedy et al., 1997). The work of Ortiz and coworkers (Ca-
macho and Ortiz,1996; Ortiz and Pandolfi,1999; Pandolfi et al., 2000) uses special cohesive
elements to implement their constitutive model to obtain a robust formulation with cor-
rect propagation speeds and energy release. Dvorkin et al. (1990) describe an alternative
approach whereby discontinuities are handled at the element level rather than enforcing dis-
continuities along element boundaries. Wells and Sluys (2000a,b) have extended the concept
with impressive results. A different approach for arriving at a description of failure is pro-
vided by Simo et al. (1993) in which the continuum constitutive equation is extended beyond
the loss of ellipticity condition into the softening regime. They introduce distribution theory
in the softening regime, which leads to a strong discontinuity. The theory has since been
extensively developed by Oliver and Simo (1994); Armero and Garikipati (1996); Larsson
and Runesson (1996); Oliver (1996a,b, 2000); and Armero (1999). The final result is also a
discrete constitutive equation relating stress to the discontinuity in displacement, and here
also the discontinuity is handled at the element or constitutive level.

Miehe and Schröder (1994); and Schreyer, et al. (2002) introduce a decohesion consti-
tutive model which falls in the category of a discrete constitutive equation that is invoked
when the effective traction on the decohesion surface reaches a critical value. The effective
traction criterion allows arbitrary failure modes, and is expressed in terms of measurable
material properties. The model relates the effective traction to the jump in displacement,
resulting in a strong discontinuity. The decohesion constitutive model is invoked to model
the failure process, but the material behavior prior to failure can be modeled independently.
Thus, brittle and ductile materials can be treated with different constitutive descriptions
prior to the initiation of failure and the decohesion model can include varying amounts of
dissipation based on the material ductility. Schreyer, et al. (2002) assume the normal to the
decohesion surface is known, a priori. Here, we determine the normal to the surface by find-
ing the direction in which the effective traction is largest. Section 2 reviews the constitutive
model and presents the method for determining the direction of the failure surface.

There have been extensive experimental studies of spall failure in brittle materials, see
Grady and Kipp (1979), for one example. Spall failure can also be studied analytically
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by propagating an initially compressive wave down a bar until it encounters a free end,
whereupon the reflected pulse becomes tensile. Square and triangular wave pulses result in
a clean spall plane (Zukas, 1982; Armero, 2002). However, experimentally applied impulses
can have a smoother profile (Clos, et al., 1991; Brara, et al., 2001). Section 3 examines spall
due to a sinusoidal pulse travelling down a bar, assuming either uniaxial stress or strain.
An analytical solution is presented for the initial stages of decohesion up to the point where
separation occurs in the bar and two pieces are formed. Surprisingly, spall patterns are more
complicated for the sinusoidal pulse as compared to square or triangular waves; in particular
failure does not occur at a single point, but is distributed over a segment of the bar. This
feature might be related to empirical evidence of multiple spall planes (Shockey, et al., 1974;
Brara, et al.; 2001).

The decohesive constitutive model is implemented in the material-point method (MPM)
(Sulsky, et al., 1994, 1995, 1996). Section 4 presents a short summary of the MPM and
the implementation of the decohesion model therein. In Section 5, the analytical solution
for the dynamic failure of the one-dimensional bar problem under uniaxial strain is used to
verify the numerical procedure. Also in this section, the same problem is solved assuming
plane stress. The more complicated wave structure leads to a likewise more complicated
failure pattern. The numerical simulations show the flexibility of the discrete decohesion
constitutive equation in combination with MPM as a model for dynamic failure.

2 Decohesion Constitutive Equation

Schreyer, et al. (2002) developed a class of discrete constitutive equations using a general
thermodynamic framework which insures that the dissipation inequality (2nd law) is auto-
matically satisfied. Each model in the class is determined by choosing (i) an expression for
the free energy, (ii) the failure function that describes when decohesion takes place, and
(iii) the evolution equations for the opening displacement. This derivation and formulation
of the discrete constitutive equation is analogous to what one might use for a rigid-plastic
continuum where the elastic part of the response is ignored, i.e., the total strain and the
plastic strain are identical. Then the elastic internal strain energy does not exist and the
stress must be provided by the solution to a boundary value problem. We summarize the
derivation of the constitutive model and present one choice for the free energy, failure func-
tion and associated evolution equations used in the subsequent two-dimensional numerical
simulations.

A reasonable assumption for brittle materials is that the stress is purely elastic in the
undamaged material. For now, it is assumed that failure is initiated on a surface with normal,
n, given. The initiation of a new failure surface is addressed below. In the two-dimensional
simulations, the failure surface is assumed to be orthogonal to the simulation plane. Thus,
the failure surface intersects the simulation plane along a curve. Given the stress, σ, and
the unit normal, n, of a potential failure surface, the traction on the surface is τ = σ · n.
The normal component of the traction is τn = τ · n, and tangential component τt = τ · t,
where t is tangent to the failure surface in the two-dimensional plane.
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We assume that the surface energy per unit area, U , depends on a dimensionless, scalar
parameter, ueff, that provides a measure of the amount of decohesion. This parameter is
chosen to be monotonically increasing, so that ueff = 0 denotes no decohesion and ueff = 1
indicates that decohesion is complete and the material has separated into two pieces. Using
the parameter ueff, the evolution equation for the discontinuity in displacement at the surface
of material failure is taken to be

u̇d = u̇effm, (1)

where m is the failure mode, and ud is the opening displacement. Note that m has the
dimensions of length, consistent with an opening displacement. The opening displacement
represents the permanent jump in displacement at the failure surface due to the decohesion
process.

The dissipation power is defined as

Ḋ = τ · u̇d − U̇ . (2)

If a parameter τ̄ conjugate to ueff is defined as

τ̄ = − ∂U

∂ueff
, (3)

then the dissipation power becomes

Ḋ = (τ̂ eff + τ̄ )u̇eff, (4)

where τ̂ eff = τ ·m.
A failure function, F (τ̄ , τ ) is typically chosen so that (i) F (0, 0) < 0, (ii) evolution of

damage occurs only if F = 0, (iii) F > 0 is not allowed, and (iv) Ḋ ≥ 0. A particular
model is obtained by choosing specific forms for U , F and m. Alternatively, we can choose
U , F , τ̂ eff, and then enforce an associated evolution rule, m = ∂F/∂τ . We adopt the latter
approach for the following elementary model. First, select

U = U0

(

1 − 1

2
(ueff)2

)

U0 > 0. (5)

This choice implies there is an initial surface energy, U0, that is reduced when decohesion
occurs. Note that,

τ̄ = − ∂U

∂ueff
= U0u

eff. (6)

Next, we choose
F = τ̂ eff + τ̄ − U0. (7)

When F = 0, τ̂ eff + τ̄ = U0, so the dissipation power becomes Ḋ = U0u̇
eff ≥ 0, and the second

law of thermodynamics is satisfied.
Finally, we adopt

τ̂ eff = U0

(

(

τn

τnf

)2

+

(

τt

τtf

)2
)1/2

. (8)

5



teff

1

ueff1

Figure 1: The decohesion relation is a linear decay in the effective traction as a function of
the effective opening displacement on the failure surface. The fracture energy is the area
under the curve.

The expression for the effective traction contains two material parameters, τnf and τtf , that
are discussed below. The resulting associated evolution for the decohesion is

m =
U2

0

τ̂ eff

(

τn

τ 2

nf

n +
τt

τ 2

tf

t

)

. (9)

Substituting (6) into (7), we obtain

F = τ̂ eff − U0(1 − ueff). (10)

When decohesion occurs, F = 0, and the dimensionless parameter τ eff = τ̂ eff/U0 is linearly
related to ueff. Figure 1 depicts this simple linear relationship between the dimensionless
effective traction on the failure surface and the dimensionless effective opening displacement.

There are three material parameters associated with this model, τnf , τtf and U0. Suppose
τt = 0 and there is no decohesion, ueff = 0. Decohesion is initiated when F = 0. Using (8) in
(10), decohesion is initiated when τn = τnf . Thus, the material parameter τnf is the failure
traction for a pure opening mode. Similarly, τtf is the failure traction in pure shear. Since
Ḋ = U0u̇

eff, we have D = U0u
eff. At separation ueff = 1, and the total energy dissipated per

unit surface area due to decohesion is U0. We also note, from the definition of U , (5), that
the stored surface energy per unit area lost due to decohesion is −U0(u

eff)2/2. At separation,
the total energy per unit area lost is −U0/2. The fracture energy is the energy per unit area
that must be provided to cause separation, and it is the sum of the stored and dissipated
energy. Thus, the fracture energy is U0/2.
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Failure Initiation

For each material point, at each loading step, τ eff = τ̂ eff/U0, (Eq. 8), must be evaluated to
determine if decohesion occurs. The failure surface is chosen by monitoring τ eff, parameter-
ized by normal vectors to a potential surface, and choosing the direction n that first causes
τ eff to exceed one (or causes it to exceed one by the largest amount). This criterion initiates
failure on a surface with normal n and thereafter the failure direction remains fixed for the
material point as possible additional decohesion occurs.

In other words, to implement the initiation criterion one has to find the maximum value
of τ eff as a function of n. Equivalently, the maximum of

(

τ effτnf

)2
= τ 2

n + β2τ 2

t where β2 = (τnf/τtf )
2 (11)

can be used. Let σ be the current stress. The principal stresses are denoted σ1 and σ2,
and unit vectors are given by (cos θ, sin θ) for θ ∈ [0, π] in principal coordinates. Then, in
principal coordinates, Eq. 11 becomes

f(θ) ≡
(

τ effτnf

)2
=

1

4
(σ1+σ2)

2+
1

4
β2(σ2−σ1)

2+
1

2
(σ2

1
−σ2

2
) cos 2θ+

1

4
(σ2 − σ1)

2 (1−β2) cos2 2θ.

(12)
The maximum of Eq. 12, as a function of θ, occurs when f ′(θ) = 0, or when (i) sin 2θ = 0,
(ii) cos 2θ = (σ1 + σ2)/(σ2 − σ1)(1 − β2) (if the right-hand side is less than or equal to one
in magnitude), or (iii) σ1 = σ2 = σ (then f(θ) = σ2, a constant).

Case(i): sin 2θ = 0 (θ = 0 or π/2). In this case, failure occurs with the normal in the
direction of maximum principal stress and

(

τ effτnf

)2
= σ2

1
or σ2

2
, (13)

whichever is larger.

Case(ii): cos 2θ = (σ1 + σ2)/(σ2 − σ1)(1− β2). If the right-hand side of this equation is less
than or equal to one in magnitude, there is a possible failure surface with a normal
whose components are

cos(θ) = ± 1√
2

[

1 +
σ1 + σ2

σ2 − σ1

1

1 − β2

]1/2

sin(θ) = ± 1√
2

[

1 − σ1 + σ2

σ2 − σ1

1

1 − β2

]1/2

and
(

τ effτnf

)2
=

1

4
β2

[

(σ1 − σ2)
2 − (σ1 + σ2)

2

1 − β2

]

. (14)

Case(iii): σ1 = σ2. This is a degenerate case of hydrostatic pressure where failure is equally
likely in any direction. An arbitrary direction is chosen.
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Algorithmically, at each loading step, we compute Eq. 13 and Eq. 14. If τ eff exceeds one for
one of these values then failure is initiated with a failure surface given by the corresponding n.
The normal to the failure surface remains fixed for future loading/unloading of the material
point.

We remark that if β → 0, mode I failure is expected since the shear failure strength is
much greater than the tensile failure strength, τtf � τnf . In the above analysis, case (ii)
will never yield the maximum effective traction since β = 0 in Eq. 14. Therefore failure will
occur with the normal in the direction of maximum principal stress. On the other hand, if
β → ∞,

|σ1 + σ2

σ2 − σ1

1

1 − β2
| ≤ 1

for β large enough (except when σ1 = σ2) and τ eff given by Eq. 14 will correspond to the
maximum value. The normal to the failure surface becomes (cos θ, sin θ) = (±1/

√
2,±1/

√
2)

in this limit, and mode II failure occurs.

3 Spall due to a Sinusoidal Pulse

In this section, we analyze spall failure in a one-dimensional bar. A compressive, sinusoidal
pulse is propagated down a bar until it interacts with a free end. The resultant reflected,
tensile wave can cause material failure if the peak stress is large enough. Triangular (Zuckas,
1982) and rectangular (Armero, 2001; Camacho and Ortiz, 1996) wave pulses have been an-
alyzed before. In these cases, there is a unique spall plane and a clean fracture. Surprisingly,
a smooth wave pulse results in failure distributed over a region of the bar. Although con-
venient for analysis, triangular and rectangular pulses may not be representative of pulses
observed experimentally. Inelastic deformation will smooth the leading part of a wave, and
it is difficult to release an applied field abruptly. Therefore, smooth pulses might be be more
representative of pulses observed experimentally. A sinusoidal pulse is chosen to illustrate
the features that might arise with smooth pulses.

Wave Solution with no Failure

Consider a bar of unit cross section. To limit the scope of the investigation, we restrict
ourselves to uniaxial stress or uniaxial strain, and to continuum elasticity. Let E denote the
elastic modulus and ρ0 the density. For uniaxial stress, E is the Young’s modulus, Y ; and
for uniaxial strain, E = Y (1− ν)/((1 + ν)(1− 2ν)), where ν is Poisson’s ratio. Let u denote
the displacement with strain and stress defined by e = ∂u/∂x and σ = Ee, respectively. The
equation of motion is

c2
∂2u

∂x2
= ü c2 = E/ρ0 (15)

where a superposed dot denotes a partial derivative with respect to time, t, c is the wave
speed and x is the uniaxial spatial coordinate.
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The material failure surface is assumed to be a plane with a normal vector aligned along
the center line of the bar. Thus, failure is in the direction of the nonzero stress σ > 0
component, with τn = σ and τt = 0. We use the notation, τm to denote the maximum stress
that can be supported. The effective traction τ eff reduces to τ eff = τn/τnf . Failure occurs
when τ eff = 1 or when σ = τn = τm = τnf . The failure mode in this problem is

m =
U0

τnf
n; (16)

so, the opening displacement only has a normal component, ud = [u]n. The evolution
equation, (1), becomes

[u̇] = u̇eff
U0

τnf
or [u] = ueff

U0

τnf
. (17)

If separation occurs physically when [u] reaches the value us then us = U0/τnf , because
ueff = 1 at separation. Thus we have ueff = [u]/us and the failure criterion, F = 0, reduces
to

τn = τm (1 − [u]/us) 0 ≤ [u] ≤ us. (18)

Failure is not initiated until the traction attains the maximum value, τm. Failure evolves as
the displacement discontinuity increases from zero to the value, us, which is the discontinuity
at separation. After separation, two new free surfaces exist.

Consider a semi-infinite bar x ≥ 0, with x = 0 denoting a free surface. First we give the
elastic wave solution to (15) for a sinusoidal pulse of duration, tD, travelling to the left and
reaching the end x = 0 at time t = 0. The displacement, u, velocity, v, and stress, σ, are

ui(x, t) = −vz

2

{

(t +
x

c
) − tD

2π
sin

2π

tD
(t +

x

c
)

}

{

H(t +
x

c
) − H(t +

x

c
− tD)

}

− vz

2
tDH(t +

x

c
− tD) (19)

vi(x, t) = −vz

2

{

1 − cos
2π

tD
(t +

x

c
)

}

{

H(t +
x

c
) − H(t +

x

c
− tD)

}

(20)

σi(x, t) = −σz

2

{

1 − cos
2π

tD
(t +

x

c
)

}

{

H(t +
x

c
) − H(t +

x

c
− tD)

}

(21)

in which the subscript i is used to indicate that this is the initial pulse. The Heaviside
function is denoted by H . The magnitude of the stress pulse is σz . Associated with this
stress is a reference velocity vz defined as

vz =
σz

ρ0c
= c

σz

E
. (22)
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Figure 2: Stress as a function of dimensionless position x/ctD for a sinusoidal wave impinging
a free end, at various dimensionless times, t/tD.

For t > 0, we must add the reflected wave (subscript r) which is described as follows:

ur(x, t) = −vz

2

{

(t − x

c
) − tD

2π
sin

2π

tD
(t − x

c
)

}

{

H(t − x

c
) − H(t− x

c
− tD)

}

− vz

2
tDH(t − x

c
− tD) (23)

vr(x, t) = −vz

2

{

1 − cos
2π

tD
(t − x

c
)

}

{

H(t − x

c
) − H(t − x

c
− tD)

}

(24)

σr(x, t) =
σz

2

{

1 − cos
2π

tD
(t − x

c
)

}

{

H(t − x

c
) − H(t− x

c
− tD)

}

. (25)

If failure does not occur, the total stress is simply

σ = σi + σr. (26)

A plot of the stress distribution for various times is shown in Fig. 2. For t < tD/2, the stress
is negative everywhere. When t = tD/2, the stress is zero and for t > tD/2, the stress is
positive.

For 0.25 < t/tD < 0.75 and for 0 < x/ctD < 0.25, the Heaviside functions can be dropped
and the stress is

σ = −σz

2

{

1 − cos
2π

tD
(t +

x

c
)

}

+
σz

2

{

1 − cos
2π

tD
(t − x

c
)

}

= −σz sin(
2πt

tD
) sin(

2πx

ctD
).

(27)
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The point closest to the origin (the free surface) at which the minimum and maximum
values of stress can be achieved is xF = ctD/4 for this time interval. When t/tD = 0.75 the
maximum stress of σz is attained. For t/tD > 0.75, the maximum stress remains constant
at σz but the location of maximum stress moves to the right. For t > tD, the wave is a pure
reflection of the original sinusoidal compressive wave.

Wave Solution Including Failure

Failure will not initiate if σz < τm, but it will initiate at the point of maximum tensile stress
(x = xF ) for σz > τm when the traction reaches the value τm. The time of failure initiation
(t = tF ) is obtained from (27) by setting σ = τm and x = xF , or

τm = −σz sin
2πtF
tD

. (28)

The limiting cases of τm = 0 and τm = σz yield tF = tD/2 and tF = 3tD/4, respectively.
It is convenient to introduce the parameter, ϕF , which denotes the time when fracture

initiates as a fraction of the pulse duration after the first appearance of tensile stress

tF = (0.5 + ϕF )tD (29)

with 0 < ϕF < 0.25. Then (28) becomes

τm/σz = sin 2πϕF . (30)

The ratio τm/σz is a dimensionless parameter that, once specified, provides the failure initia-
tion time, tF . For example, if τm = 0.75σz, then ϕF = 0.135 and tF = 0.635tD. In particular,
note that xF 6= ctF .

Once failure is initiated, we postulate that waves are initiated traveling to the left and
to the right of the failure point. For t ≥ tF ,

uR,d(x, t) = vzG(t − x/c − tR) uL,d(x, t) = −vzG(t + x/c − tL)

vR,d(x, t) = vzG
′(t − x/c − tR) vL,d(x, t) = −vzG

′(t + x/c − tL)

σR,d(x, t) = −σzG
′(t − x/c − tR) σL,d(x, t) = −σzG

′(t + x/c − tL)

(31)

in which the shifted times are

tR = tF − xF

c
tL = tF +

xF

c
. (32)

The subscripts R, d and L, d denote decohesive waves travelling to the right and left, respec-
tively. The unknown function G is to be determined by satisfying the decohesive constitutive
equation. A prime denotes a derivative with respect to the argument. The form of (31) pro-
vides stress continuity at x = xF . The stress at the failure point consists of the sum of the
initial and reflected waves and either σR,d or σL,d

σ|x=xF
= −σz sin 2πt/tD − σzG

′|x=xF
. (33)
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On the other hand, the difference of the displacement fields defined by the right and left
propagating waves at x = xF provides a displacement discontinuity

[u]|x=xF
= uR,d|x=xF

− uL,d|x=xF
= 2vzG|x=xF

(34)

Substitute terms from (33) and (34), and note that τn = σ|x=xF
; thus, the decohesion

constitutive equation of (18) at x = xF becomes

G′(t − tF ) − 1

t∗
G(t − tF ) = −τm

σz

− sin 2πt/tD tF ≤ t ≤ tF + ∆ts (35)

in which ∆ts is the time required to obtain separation once failure is initiated. The charac-
teristic time t∗ that arises from the equation is defined through material properties

t∗ =
us

2vz

σz

τm

=
ρ0cus

2τm

=
ρ0c

2S
S = τm/us. (36)

Note that if failure is not completed by the time t = 3tD/4, then a different solution exists
because the expression for the stress, (27), is no longer valid. We impose the initial decohesion
condition that the displacement discontinuity is zero when t = tF , or G(0) = 0 . It follows
from (28) and (35) that G′(0) = 0. Hence, from (28) and (33), the starting value for the
stress is τm when decohesion is initiated.

The governing equation for decohesion (35) contains the characteristic time of material
failure, t∗, and the duration of the forcing pulse, tD. These characteristic times might very
well be of different orders of magnitude. To conveniently capture the ratio of these two time
scales, we define the following dimensionless parameter

r∗D = 2πt∗/tD (37)

In addition, we convert to a shifted time

t̂ = t − tF . (38)

The right-most term of (35) becomes

sin 2πt/td = sin 2πtF/tD cos r∗D t̂/t∗ + cos 2πtF /tD sin r∗D t̂/t∗

= − sin 2πϕF cos r∗D t̂/t∗ − cos 2πϕF sin r∗D t̂/t∗
(39)

in which (28), (29) and (30) have been used. Then (35) becomes

G′(t̂) − 1

t∗
G(t̂) = sin 2πϕF (cos r∗D t̂/t∗ − 1) + cos 2πϕF sin r∗D t̂/t∗ 0 ≤ t̂ ≤ ∆ts. (40)

The solution to (39) subject to G(0) = 0, is

G(t̂) = t∗
{

c1r
∗

Det̂/t∗ + sin 2πϕF − c1 sin(r∗D t̂/t∗) − c2 cos(r∗D t̂/t∗)
}

G′(t̂) = r∗D

{

c1e
t̂/t∗ − c1 cos(r∗Dt̂/t∗) + c2 sin(r∗D t̂/t∗)

} (41)
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where the constants c1 and c2 are given by

c1 =
1

D
(cos 2πϕF −r∗D sin 2πϕF ) c2 =

1

D
(r∗D cos 2πϕF +sin 2πϕF ) D = 1+(r∗D)2. (42)

The separation time t̂ = ∆ts is obtained from the requirement that the stress be zero.
With the use of (33), (39) and (41), the stress at the failure point is written

σ|x=xF
= σz

{

sin 2πϕF cos(r∗D t̂/t∗) + cos 2πϕF sin(r∗Dt̂/t∗) − G′
}

. (43)

Therefore, ∆ts is the solution to

sin 2πϕF cos(r∗D∆ts/t
∗) + cos2πϕF sin(r∗D∆ts/t

∗) − G′(∆ts) = 0; (44)

or, after some algebra,

c1r
∗

De∆ts/t∗ − c1 sin(r∗D∆ts/t
∗) − c2 cos(r∗D∆ts/t

∗) = 0. (45)

For plotting purposes, we define a parameter, ηF , that provides a measure of the propensity
for failure to occur

ηF =
σz − τm

σz
0 ≤ ηF ≤ 1. (46)

With the use of (30), ϕF is related to ηF as follows

sin 2πϕF = 1 − ηF cos 2πϕF = (ηF (2 − ηF ))1/2. (47)

Solutions to (45) for separation time as a function of the dimensionless parameters, ηF and
r∗D, are plotted in Fig. 3. If ηF = 0, the stress is just large enough to initiate decohesion
and it might be expected that the time for separation might be extremely large. On the
other hand, if ηF = 1, the imposed stress is much larger than the failure initiation stress,
and failure, as expected, occurs instantaneously. We note that as the duration of the pulse
increases, that is for lower values of r∗D, the time for separation increases.

In Fig. 4, we plot the stress as a function of position for a sequence of times starting with
the failure initiation time. At the failure point, we see that the stress drops with time, as
it ought to. However for a subdomain centered at x = xF , the stress rises above the failure
stress (0.75σz), a result of the assumption that failure occurs at only one point in the above
analysis. Failure would occur everywhere in this subdomain if failure were allowed to initiate
whenever the stress is above the failure stress . If the strength of the material is spatially
random, then failure may initiate at a number of discrete points. This type of mechanism is
consistent with specimens dissected after experiments that show a number of potential spall
planes (Shockey, et al., 1974; Brara, et al., 2001).
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4 The Material-Point Method

The material-point method (MPM) is a general numerical technique for solving continuum
mechanics problems. In this section, we describe how the decohesion model can be imple-
mented in the MPM framework. In the next section, we will use MPM with the decohesion
model for dynamic simulations of material failure.

The material-point method (Sulsky et al., 1994; Sulsky et al., 1995; Sulsky and Schreyer,
1996) uses unconnected Lagrangian material points distributed throughout the volume of a
solid body to discretize materials. The material points in the numerical solution carry prop-
erties such as mass, momentum, stress, and strain. The points move through an Eulerian
spatial mesh that is used to compute the interactions between the material points. Thus,
information carried by the material points is projected onto the spatial mesh, where the mo-
mentum equation is solved in an updated Lagrangian frame. This projection avoids solution
techniques that involve computing pairwise interactions, so the computational work in MPM
is linear in the number of material points. The material points are updated using the solution
obtained on the mesh. In particular, the constitutive equation (of any type) is evaluated at
the material points. Since material points are not logically connected, connectivity of the
points does not have to be broken or redefined after failure.

The part of the MPM algorithm relevant to decohesion is implementation of the consti-
tutive model. A strain increment for each material point is determined using the gradient
of the nodal basis function,

∆ep =
∆t

2

Nn
∑

i=1

[

Gn
ipv

L
i + (Gn

ipv
L
i )T
]

, (48)

where Gn
ip is the contribution to the gradient of the shape function, at the nth time step, from

mesh node i, and evaluated at material point position xn
p . The gradient acts on the nodal

velocity, at node i, at the end of an updated Lagrangian time step of the momentum equation,
vL

i . The result of summing contributions from all Nn nodes (only those in the support of
the shape function contribute) is the strain for a material point, ep. This strain increment
is then used to update the stress at the material point with an appropriate constitutive
equation for each material. Any internal variables necessary in the constitutive model can
also be assigned to the material points and transported along with them.

In general, there is no need to determine the actual shape of the deformed material
element associated with each material point. However, when material separation occurs,
there is a need to consider the effect on the strain field over the element (compatibility).
The increment in strain, ∆e, and the increment in decohesion, ∆ud, are approximated by
constants over each element. The failure mode is the unit vector m̂ = ∆ud/|∆ud|. For a
given time increment, if the total (average) strain increment is considered fixed, the result of
the decohesion is that the effective strain increment in the remaining part of the material in
the element must be reduced (relaxed) by what might be called a decohesion strain increment,
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∆ed, which satisfies a weak form of the compatibility condition
∫

∆eddV =

∫

|∆ud|1
2

(n⊗ m̂ + m̂⊗ n) dA, (49)

in which dV and dA denote differentials of volume on the element and of area on the de-
cohesion surface, respectively, and n is the unit normal to the decohesion surface. With
the assumption that the decohesion and strain are constant over each element, the result is
the following expression relating the “relaxation” or “decohesion” strain increment to the
increment in decohesion

∆ed =
|∆ud|
2L

(n⊗ m̂ + m̂ ⊗ n) . (50)

The effective length, L, is merely the ratio of the element volume to the area of the decohesion
surface within that element.

To summarize the implementation of the decohesive constitutive model in MPM, stress
and strain are material-point properties, and the constitutive equation is evaluated for each
material point in the simulation. For simplicity, assume that the basic undamaged material
is elastic. The constitutive equation for elasticity is written

σ = E : ee. (51)

The stress σ is related to the elastic strain ee through a fourth order elasticity tensor E. The
elastic strain is the difference between the total strain and the decohesion strain, ee = e−ed.
Given the normal and tangent to the decohesion surface, n and t, the traction on the surface
is τ = σ · n with normal component τn = τ · n, and tangential component τt = τ · t. The
equations that must be solved are as follows.

1. For each loading step in the numerical procedure, compute a trial elastic stress.

2. Check the failure surface. If F < 0 then the step is elastic and no further calculation
is required. If F ≥ 0, failure occurs. If failure has occurred previously for the material
point then the normal and tangent to the decohesion surface are known. If not, use the
failure initiation criterion to determine the normal and tangent to the surface. (Note,
in this work, decohesion is not allowed for negative normal tractions. Stress is positive
in tension.)

3. If F ≥ 0, the stress must be adjusted and ueff incremented to restore the consistency
condition F = 0. The stress is adjusted by evolving the opening displacement, or
decohesion displacement, ud, according to

u̇d = u̇effm (52)

where the failure mode m is

m =
U0

τ eff

(

τn

τ 2

nf

n +
τt

τ 2

tf

t

)

. (53)
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A corresponding evolution for decohesion strain is defined by

ėd =
u̇eff

2L
(m ⊗ n + n⊗ m) . (54)

Iteration is required to find the solution to F = 0 where F is considered to be a function of
ueff. We use the secant method to find the zero of F .

5 Numerical Examples

The first example examines the numerical solution to the spall problem of Section 3 using a
bar with uniform cross-sectional area, and uniform initial density ρ0. Dimensionless variables
are used in the numerical simulations, where lengths are measured in units of L = ctD, time
in units of T = tD and mass in units of M = τmct3D. As before, the constant c is the
wave speed, c2 = E/ρ0, and tD is the duration of the initial sinusoidal pulse. The bar has
length 1.5L units (x-direction), and is 0.5L units high (y-direction). A prescribed velocity
is input at the right end and the left end is free. Uniaxial strain conditions are imposed by
constraining the lateral surfaces. With this scaling, the units of stress are M/T 2L = τm.
The basic material is elastic with a Young’s modulus, Y = 1024τm, and Poisson’s ratio,
ν = 0.25, making the elastic modulus for uniaxial strain E = 1228.80τm. The peak stress
for the input wave is σz = 1.5τm; and the peak velocity is then vz = 0.00122c. The input
pulse is in the x-direction given by v = vz(1 − cos(πt/tD)), for t ≤ tD, where t is time and
tD = 60 is the duration of the pulse.

The input velocity on the right end of the bar causes a compressive pulse to travel down
the bar. When the pulse reflects off the free end on the left, the bar is in tension. If the stress
in the tensile reflection is large enough, failure will be initiated by decohesion. Figure 5 shows
a reference calculation where decohesion is not allowed, so the bar is purely elastic. The left-
going, initial wave travels at a velocity of c = 1 and therefore reaches the left boundary
at time t = 90 and is completely reflected by t = 150, turning into a right-going tensile
wave. The mesh for this calculation consists of square elements with side length h = 1.0, the
time step is ∆t = 0.02, and there are 4 material points per element. At this resolution, a
small amount of numerical dispersion is apparent in Figure 5, particularly at the later time,
t = 150, where the computed wave has moved more slowly and is not completely reflected
as in the exact solution. Also, at time t = 180, the wave form is shifted slightly to the left
from a complete reflection of the t = 60 pulse.

Localized Decohesion

In order to compare with the analytical solution, in the next test, we allow only the material
points in one vertical strip of elements to follow the dechoesion constitutive equation. These
points are located near xF = ctD/4 = 15 where decohesion initiates. The parameters for
the decohesion are τnf = 1.0τm and τtf = 10.0τm, so normal failure is much more likely.
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Figure 5: Dimensionless stress, σ/τm, vs. distance x along the midline in a purely elastic
bar at various times due to a sinusoidal, compressive input of duration tD = 60 at the right
which reflects as a tensile wave from the free, left end.

The dissipated energy is U0 = 0.00375τmctD. These properties provide the following values
of the dimensionless parameters considered in Section 3 that characterize the decohesion:
ϕF = 0.116, tF /tD = 0.616, t∗ = 2.30, r∗D = 0.241, and ηF = 1/3. Figure 6 is a plot of
dimensionless stress σ11/τm as a function of dimensionless position x/ctD, for various times
after failure t = tF +ζ∆ts. For the given parameters, ∆ts = 4.56, and tF = 127. (The failure
time is measured from the start of the simulation. The failure time is 37 after the initial
wave first impinges on the left end of the bar at x = 0.)

Figure 6 demonstrates the agreement between the numerical and analytical solutions.
We observe that failure is occurring more slowly in the numerical simulation since complete
separation occurs at at slightly later time. This discrepancy is due to the resolution of the
simulation. Figure 7 shows a similar plot, for a computation where the mesh size has been
reduced by a factor of two, h = 0.5. The accuracy is improved both in the shape of the wave
and in the time to failure. Figure 8 compares the stress in the bar at an early, middle and late
time. At t = 60 the left-going compressive, initial, sinusoidal pulse fully enters the domain;
at t = 135 complete separation due to decohesion has just occurred. After decohesion, at
t = 150, there is a right-going wave that has traveled down the bar and a left-going wave
that has reflected from the free end at x = 0 resulting in a right-going compressive wave.

Distributed Decohesion

The previous results, and the analytical solution of Section 3, are based on the assumption
that decohesion occurs only at one point along the bar. It can be seen from these solutions
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Figure 6: Plot of dimensionless stress σ11/τm vs. dimensionless distance along the bar x/ctD
at times t = tF + ζ∆ts for (a) ζ = 0.0088 (t = 127), (b) ζ = 0.2281 (t = 128), (c) ζ = 0.4474
(t = 129), (d) ζ = 0.6667 (t = 130), (e) ζ = 0.8860 (t = 131), (f) ζ = 1.1053 (t = 132). The
solid line is the analytical solution and the dashed line is the numerical solution. The mesh
size is h = 1.0.
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Figure 7: Plot of dimensionless stress σ11/τm vs. dimensionless distance along the bar x/ctD
at times t = tF + ζ∆ts for (a) ζ = 0.0088 (t = 127), (b) ζ = 0.2281 (t = 128), (c) ζ = 0.4474
(t = 129), (d) ζ = 0.6667 (t = 130), (e) ζ = 0.8860 (t = 131), (f) ζ = 1.1053 (t = 132). The
solid line is the analytical solution and the dashed line is the numerical solution. The mesh
size is h = 0.5.
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Figure 8: Stress σ11/τm vs. distance x along the midline of a bar at t = 60 when the left-
going compressive pulse fully enters the domain, at t = 135 when complete separation has
occurred, and after decohesion, at t = 150, when the right-going wave has traveled down the
bar and left-going wave has reflected from the free end at x = 0 resulting in a right-going
compressive wave.

that after decohesion initiates, the stress adjacent to the decohesion point is still above the
threshold level. This observation indicates that if all of the material in the bar were treated
uniformly, decohesion would occur in a region rather than a single point. Figure 9 shows the
stress σ11/τm for a simulation as above, with a mesh having h = 0.5 and ∆t = 0.25, except all
of the material in the bar is subject to the decohesive constitutive model. The wave reflected
from the free end is now clipped corresponding to a peak stress given by τnf/τm = 1.0.
Compare Fig. 7 to see the difference in the progression of decohesion. At t = 127, decohesion
just initiates, the dip in the wave profile associated with the commencement of decohesion
occurs at x = ctD/4 = 15; however, at later times, decohesion quenches at this point. There
eventually are two peaks in the decohesion region to the right and left of the initial failure
point. After decohesion, the right-going wave has a larger area than the left-going wave.
There are wave reflections from the originally free left end, and from the failed surfaces.

The velocity wave shown in Fig. 10 corresponds to the stress waves in Figs. 7 and 9. In
Fig. 10a, only a narrow band of material points is allowed to undergo decohesion, while in
Fig. 10b, the material is treated uniformly with respect to the constitutive model. In the
former case a pronounced discontinuity is visible in the velocity field, while in the latter case
the velocity appears to be smooth, but with a steep gradient in the decohesive region. A
similar contrast appears in plots of the effective opening displacement, shown in Fig. 11. In
Fig. 11a, all of the displacement jump is concentrated at one point, x = xF = ctD/4, where
the material is allowed to fail in the localized case. In Fig. 11b, the displacement jump varies
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Figure 9: Stress σ11/τm vs. distance x along the midline of a bar at t = 128, t = 132, t = 136,
t = 140 and t = 144 showing the progression of failure in a bar with a uniformly applied
decohesive model. Compare with Fig. 7 for the case where only a localized line of material
undergoes decohesion. The mesh size is h = 0.5.

(a) (b)

Figure 10: Horizontal component of velocity vs. distance along the midline of a bar at
various times showing the progression of failure in a bar with (a) a localized zone of failure
and (b) a uniformly applied decohesive model. The mesh size is h = 0.5.
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Figure 11: Effective opening displacement vs. distance along the midline of a bar at various
times showing the progression of failure in a bar with (a) a localized zone of failure and (b)
a uniformly applied decohesive model. The mesh size is h = 0.5.

(a) (b)

Figure 12: Contour plot of the effective opening displacement showing a zone centered
around x = 15 where decohesion has occurred for (a) decohesion applied only in a strip and
(b) decohesion applied uniformly. The mesh size is h = 0.5.
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Figure 13: (a) Stress σ/τm vs. distance x along the midline of a bar at various times due to
a sinusoidal, compressive input of duration tD = 60 at the right which reflects as a tensile
wave from the free, left end. The reflected wave causes decohesion to occur because the peak
stress τnf/τm = 1.0 is exceeded. For this simulation, the decohesive constitutive model is
applied uniformly in the bar; compare with Fig. 8 for the case where only a localized line of
material undergoes decohesion. The mesh size is h = 0.5.
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over a region of decohesion when the decohesion model is applied uniformly. At early times,
the effective opening displacement has a maximum centered at x = xF = ctD/4, but at later
times decohesion quenches in the center and a peak occurs to the right and left. The large
peak to the right actually reaches the dimensionless value 1, indicating complete failure,
while the peak to the left is slightly lower.

Figure 12 shows contour plots of the effective opening displacement, ueff, a measure of the
amount of decohesion. In Fig. 12a, all the decohesion occurs at the material points located
in a strip of elements centered at the analytically determined spall plane, xF = ctD/4 = 15.
Figure 12b is the corresponding plot when decohesion is allowed everywhere in the bar. A
decohesion region is observed in this case, with the main separation occuring to the right
and left of xF = ctD/4 = 15. These figures are consistent with the plots shown in Figs. 11a,
b. Interestingly, on a coarser mesh, the details in the decohesion zone of Fig. 12b are not
resolved and the discrete solution resembles the analyical solution.

Figure 13 shows the stress waves traveling in the bar when decohesion is allowed to
occur uniformly throughout the bar. This figure is a plot of dimensionless stress σ11/τm vs.

distance x along the bar and is analogous to the elastic case, Fig. 5, and the case where the
decohesive zone is limited to a thin band, Fig. 8. At the early times, t = 60, t = 105 and
t = 120, the input compressive wave and its reflection from the free end are purely elastic.
At t = 135 decohesion is in its early stage; Fig. 9 shows the details of the decohesion. At
t = 150 decohesion is complete and a relatively large right-going tensile wave and a smaller
compressive wave are apparent. The compressive wave is the result of reflections from the
failed surface and reflections from the free end. Compared to the wave profiles in Fig. 8,
there is a larger size difference in the wave pulses that split from the failed surface after
decohesion. At time t = 180, the right-going wave has continued to travel down the bar,
while waves continue to reflect from the free surfaces.

An analytical solution is not available when decohesion is permitted uniformly in the bar.
To test convergence of the numerical method, we examine again the computed value of the
stress at the six times t =60, 105, 120, 135, 150 and 180 for solutions obtained with mesh
sizes h =2.0, 1.0, 0.5 and 0.25. When h = 2.0, the time step is ∆t = 1.0, and the time step
is reduced by a factor of two for each similar reduction in the mesh size. Figure 14 shows
plots of the stress at each of the six times, overlaying the solutions from each mesh. At early
times, the solution on all meshes is similar, at later times there is a visible difference between
the coarse and fine mesh solutions, with coarser mesh solutions appearing to approach the
solid line, fine mesh solution, especially in the primary wave pulse traveling to the right.
Later times show a trailing train of high frequency pulses in the decohesion region.

If the finest mesh solution is used as the standard then the L2-norm of the difference
between the solution on the coarser meshes and the fine mesh can be used to approximate
the error in the coarser mesh solutions. The observed convergence rate is different at different
times, but varies from about 1.7 to 2.1 where the solution is smooth. For smooth solutions,
the convergence rate of MPM is expected to be 2.0. Details are different on various meshes
in the decohesion region and the observed convergence rate is one or less. Since there
is no convergence theory for discontinuous solutions, it is not clear what to expect. The
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discontinuity can emit waves of all frequencies and we see high frequency oscillations in the
region near the jump in displacement. On finer meshes, higher frequency oscillations can
be represented and such oscillations occur. In addition to convergence of the stress, we
have examined the effective opening displacement. When h = 0.25, the effective opening
displacement continues to show two main peaks the same distance apart as in Figs. 11b and
12b where the mesh size is h = 0.5. There are more smaller peaks visible around these two
main peaks on the finer mesh. Thus the primary opening appears to be reproduced on finer
meshes, but again details of the high frequency modes vary.

Plane Stress

Material in the bar is given the same properties as considered previously, with the decohe-
sive constitutive equation applied uniformly throughout the bar, except now plane stress is
assumed. This problem becomes truly two dimensional since waves reflect from the lateral
free surfaces making the wave profile different at different heights in the bar. For reference,
Fig. 15 shows the elastic waves along the midline and along the lower edge of the bar. In the
figure, dimensionless stress, σ11/τm is plotted versus horizontal position, x. At early times,
t = 60, t = 105 and t = 121, the stress is compressive. The wave form shows the effects of
reflections from the lateral surfaces. Times t = 135, t = 151 and t = 180 show tensile waves
that result from reflections from the free end at x = 0. At the lower edge of the bar, Fig 15b,
we see a tensile peak stress located near x = ctD/4 = 15 at time t = 151 that just reaches
the failure threshold, τnf/τm = 1. The same pattern is observed along the top of the bar,
while along the midline of the bar, Fig 15a, the tensile peak stress is larger than the failure
threshold and is located near x = ctD/2 = 30.

Figure 16 shows the modification to the wave profiles due to decohesion. When decohesion
is allowed, small regions of damage occur along the top and bottom edges of the bar near
x = ctD/4 = 15, consistent with the peak elastic stress. Note that in Fig. 16b, the peak stress
at time t = 151 along the lateral surface does not exceed τnf/τm = 1. More extensive damage
occurs near x = ctD/2 = 30 beginning at the midline of the bar, again consistent with the
large peak stress observed in the elastic case. Figure 16b shows the effect of decohesion
beginning at time t = 151 and the reduction of the right-going wave at t = 180. Moreover,
at t = 180, a left-going wave initiated at the site of decohesion is apparent. Compared with
Fig. 15, the peak stress does not get above τnf/τm = 1 throughout the bar.

Figure 17 shows the progression of failure through a sequence of contour plots of the
effective opening displacement. At time t = 136 failure has occurred along the top and
bottom lateral surfaces of the bar, as indicated by the asterisks marking the maximum
effective opening displacement in Fig. 17a. At time t = 156, Fig. 17(b), failure just becomes
noticeable at the centerline of the bar. At later times, t = 161, t = 166, t = 171, the failure
propagates vertically giving a damaged region located near x = ctD/2 = 30 across the bar.
The maximum opening displacement occurs in this region at these times. Secondary surfaces
appear at t = 161 which also grow at later times. Additional failure appears at late stages,
t = 171, t = 176, at the lateral surfaces. The interplay of waves reflecting from the lateral
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Figure 14: Stress σ/τm vs. distance x along the midline of a bar due to a sinusoidal,
compressive input of duration tD = 60. The incoming pulse is shown in (a); in (b) the pulse
has reached the left boundary; and in (c) the pulse is in the process of being reflected. The
reflected wave causes decohesion to occur because the peak stress τnf/τm = 1.0 is exceeded.
Frame (d) shows decohesion in progress and frames (e) and (f) show the continued progression
of the wave to the right after decohesion has occurred. For this simulation, the decohesive
constitutive model is applied uniformly in the bar. Each frame shows the stress computed
on four meshes with sizes h = 2.0, h = 1.0, h = 0.5 and h = 0.25.
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(a) (b)

Figure 15: Dimensionless stress σ11/τm vs. distance x at various times in a purely elastic
bar under plane stress. In (a) the stress is plotted along the midline of the bar and in (b)
the stress is plotted along the bottom of the bar.

(a) (b)

Figure 16: Dimensionless stress σ11/τm vs. distance x at various times in a bar under plane
stress with decohesion when σ11 reaches τm. In (a) the stress is plotted along the midline of
the bar and in (b) the stress is plotted along the bottom of the bar.

28



(a) (b)

(c) (d)

(e) (f)

Figure 17: Contour plots of the effective opening displacement at (a) t = 136, (b) t = 156,
(c) t = 161, (d) t = 166, (e) t = 171, (f) t = 176.
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surfaces in this example, conspires to form a complicated picture of failure. Two aspects of
the failure process appear under plane stress that are not apparent under uniaxial strain.
First, the spall surface is not flat and secondary failure regions occur away from the main
spall surface. Second, the main spall region is displaced further from the free end at x = 0
under plane stress as compared with uniaxial strain.

6 Conclusion

A decohesive constitutive model combined with elasticity has been presented to study failure
in brittle materials. The specific model belongs to a class of models introduced in Schreyer, et

al. (2002). This paper presents a simple initiation criterion that can be used to determine the
initial direction of the failure plane. The model has been implemented in the material-point
method for numerical simulations.

The response of a bar to an applied, sinusoidal, stress pulse has been examined both
analytically and numerically. In the analytical solution, a restriction to uniaxial stress or
strain is made; and it is also assumed that decohesion can occur at one point only. These
assumptions reduce the problem to one dimension and make the analysis tractable. The
solution is given for the initial stages of decohesion, up to the point where the bar separates
into two pieces. Numerical simulations using uniaxial strain, and allowing failure to occur
only at the analytically determined location, faithfully reproduce the details of the analytical
failure pattern.

The numerical simulations are extended to allow all of the material in the bar to be
subjected to failure as governed by the decohesive constitutive model. As expected, failure
occurs in a region of the bar rather than at a single point. The major damage occurs in two
locations displaced slightly to either side of the location obtained under the assumptions of
the analytical solution. The appearance of multiple spall planes is consistent experimental
observations (Shockey, et al., 1974; Brara, et al.; 2001). The resulting wave pattern is altered
by the distributed decohesion so that there is less symmetry between the two sides of the
spall plane.

Additional simulations relax the uniaxial strain assumption to plane stress. The resulting
problem is truly two dimensional. The complex interaction of waves produces a progression
of damage that starts near the lateral surface of the bar, and eventually includes a spall
surface that initiates from damage along the midline of the bar. The spall surface is located
further from the free end of the bar as compared with the one-dimensional examples.

The decohesion constitutive model is a conceptually simple means to model material fail-
ure. Prior to failure, decohesion can be combined with elasticity or other constitutive models
to account for brittle behavior or varying amounts of ductility. The formulation is thermo-
dynamically consistent and correctly accounts for dissipated energy. In contrast to softening
plasticity, the underlying equations remain well-posed and the stress carrying capacity of the
material is diminished anisotropically in accordance with the traction-displacement relation
enforced on the failure surface. Numerical simulations demonstrate the dynamic determi-
nation of the initiation and direction of failure using the decohesive model. In combination
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with MPM, a flexible tool has been developed for the analysis of dynamic failure. In par-
ticular, MPM enforces constitutive equations at material points; when decohesion occurs at
these points there is no need to duplicate nodes or otherwise remesh. Separation of surfaces
is allowed as part of the numerical solution since connections between material points are
not explicit, but exist only through interactions of material points with field variables on the
background mesh.
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